AD=Al08 585

UNCLASSIFIED

MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 1271
GENERALIZING SPECIFICATIONS FOR UNIFORMLY IMPLEMENTED LOOPS, (U)

0oCT 81 D D DUNLOPy» V R BASILI F49620=80=-C~0001
TR=1116 AFOSR=TR=81-0791 L

o
Al 1.0 ke e
=z
I i "=
4
y I
- =
= =
L2 flis e
B — — —
— E———— —— ,r
.MI(‘ROCOPY RlS(\LUIION'HSl (HART
NATIONA RREAL .-.wr‘\h; T A : 1

ADA1UB585

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

3
; 20742
¥
X

for pablie relense
dsmridution un2imited,

81 12 14 036

i N

) T
— - - = ;I_m_~ e e e s ———— e = e e — . — -
SECURITY CLASS\PICATION OF THIS PAGE (hen Dads Enterc?) . '_ R
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
T. REPORT NUMBER ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

AFOSR-TR- 81 -079 1@0!\!08545

& TITLE (emd Subtitle)

GENERALIZING SPECIFICATIONS FOR UNIFORMLY

IMPLEMENTED LOOPS Technical Report

S. PERFORMING ONG. REPORT NUMBER

L -
7. AUTHORNRC(S) §. CONTRACT OR GRANT NUMBER(s)
Douglas D. Dunlop and Victor R. Basili F49620~-80~-C-0001

e —————————————————
Vo, naocuan ELEMENT. PROJECT, TASK
REA & WORK UNIT NUMSERS

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Department of Computer Science

University of Maryland 61102F; 2304/A2
| Callege Park, Maryland 20742
tl. CONTROLLING ornc: NAME AND ADDRESS 12. REPORT DATE
Mathematical & Information Sciences Directorate October 1981
Air Force 0ffice of Scientific Research 3. NUMBER of P AGES
Bolling AFB DC 20332 37
14, MONITORING AGENCY NAME & ADORESS(I! dilferent trom Controlling Ottice) 15, SECURITY CLASS. (of this repert)
Unclassified

TSa, DECL ASSIFICATION/ DOWNGRAGING |
SCREQULE

T s e
16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diflerent irom Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse side if necessery end identity by block mmmber)

program verification, valid generalization, base generalizatiom,
uniformly implemented loop, iteration condition

v

20. ABSTRACT (Continue on reverss side if necessary and identily by dlock number) 1he problem of generalfztﬁg‘“
functional specifications for WHILE loops is considered. This problem occurs
frequently when trying to verify that an initialized loop satisfies some func-
tional specification, {.e. produces outputs which are some function of the
program inputs.

The notion of a valid generalization of a loop specification is defined. A
particularly simple valid generalization, a base generalization, is discussed.
A property of many commonly occurring WHILE loops, that of being uniformly

implemented, is defined. A technique is presented which exploits this property

DD , 5", 1473 Eoimion oF 1 nov 63 1s ossoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Ji.n Decea Entered)

\‘)ccim'rv Cmecnlon OF THIZ PAGE(When Data Enteced) °

in order to systematically achieve a valid generalization of the loop
specification. Two classes of uniformly implemented loops which are par-
ticularly susceptible to this form of analysis are defined and discussed.
The use of the proposed technique is illustrated with a number of applica-
tions. Finally, an implication of the concept of uniform loop implementation
for the validation of the obtained generalization is explained.

A

UNCLASSIFIED

SECURITY CLASSIFICATION OF T'® PAGE(When Date Enteced)

i

———

Technical Report TR-1116 October, 1931
-2 -F49620-80-C-008

000/

Generalizing Specifications For
Uniformly Implemented Loops*

Douglas D. Dunlop and Victor R. Basili

Department of Computer Science
University of HMaryland
College Park, MD 20742

ATR FORCE OFFTCE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANS"ITTAL TO DTIC
This technie~t vepo~t hns been rovierad nnd i3
approved for pu™lin =~elense IAWAFR 19)-12,
Distributior ¢- unlimited.

MATTHEW J. KERPER

Chief, Technical InformationDivision

*This work was supported in part Dby the Air TForce C(Cffice of
s3cientific Research Contract GR-F49520-30-C40Cl to the Univer-
sitv of Marvland. The material contained in this n»aper will
becnr2 part onf a Adissertation to be submitted to “he Graduate
8chool, Univercsity of raryland, by Pouglas D. Tunleop, in partial
fulfiliment of the requirements for the Ph.m. “egre2 in Tomputer
3cience.

(:) Cepyrigit 1231 by n.2. Dunleod and V.R. Lasi'i

L(’ .

e

ABSTRACT

The problem of generalizing functional specifications for
WHILE 1loops is considered. This problem occurs frequently when
trying to verify that an initialized loop satisfies some func-
tional specification, i.e. produces outputs which are some func-~-

tion of the program inputs.

The notion of a valid generalization of a loop specification
is defined. A particularly simple valid generalization, a base
generalization, is discussed. A property of many commonly occur-
ring WHILE 1loops, that of being uniformly implemented, Iis
defined. A technique is presented which exploits this property
in order to systematically achieve a valid generalization of the
loop specification. Two classes of uniformly implemented 1loops
which are particularly susceptible to this form of analysis are
defined and discussed. The use of the proposel technique |is
illustrated with a number of applications. Finally, an implica-
tion of the concent of uniform loop implementation for the wvali-

dation of the obtained generalization is explained.

X=YNRDS and PIPASES: program verification, valid generalization,
base genaeralization, uniformly implemented loop, iteration cendi-

tion

2o CATEGORIES: .24

Generalizing Specifications For Uniformly Implemented Loops

1. Introduction

Consider the problem of proving/disproving a WHILE loop
correct with respect to some functional specification £, i.e. f o
requires the output variable(s) to be some function of the inputs
to the loop. 1If the loop precondition is weak enough so that the
domain of £ contains the intermediate states which appear after 3

each loop iteration, the loop is said to be closed for the domain

of £f. An important result in program verification is that if the
loop is closed for the domain of its specification, there are two
easily constructed verification conditions based solely on the
specification, 1loop predicate and loop body which are necessary
and sufficient conditions for the partial correctness of the loop
with respect ¢to its specification [Mills 75, llisra 78]. 1If the
locp is not closed@ for the domain of the specification £function,

a generalized specification (i.e. one that implies the original

gsvecification) which satisfies the closure requirement must be
discovered before these verification conditions can be con-
structed (this problem is analogous to that of dJdiscovering an
adeguate loop invariant for an inductive assertion prcof [Hoare

69] of the »rojran).

e remark that the restricted svecification often occurs in 'q

the process of analyzing an initialize? "HILZ locp, i.e. one that

consists of a "MILT lood preceded by some initializatiorn code.

-

This initiz’ization trpically takes the forn of assignments of
constant values to some of the variatles manipulated by the loeg.

Cuamples include setting a counter to 2zero, a s=2arch flag to

Generalizing Specifications For Uniformly Implemented Loops

FALSE, a queue variable to some particular configuration, etc.

is clear that the initialized loop is correct with respect to
itself is

It
some specification if and only if the WHILE 1loop by

correct with respect to a SIightly modified specification. This

specification has the same postcondition as the original specifi-

cation and a precondition which 1is the original precondition

together with the condition that the initialized variables have

their initialized wvalues. Since the initialized variables will

typically assume other values as the loop iterates, the loop most

likely will not be closed for the domain of this specification

and a generalization of it will be necessary in order to verify

the correctness of the program.

Exarnple 1 - The following program multiplies natural numbers

using repeated addition: h] ’
co 5‘h
{¢>=0,k>=0} | [8%
z := 0; " oo S
= H o b4 1 ~ M _C’. g
while v > 0 do Boom e CE 8 P
p2i0) T~ 5o 7
Z := Z + K; e R
Vo os= v - 1 I U Pg - v
° n & 0 4. e 4 %
, od e vt - T
‘Z=W*k} » g ;” ' ;: Lo ! ;; ,‘: *?)
* < bkl] bt
Dy D oa oy -
e . — N Py

The term v0 aprearing in the postcondition

P

value of v, The program is correct if and only if

z=0,v>=0,%>=0}
while v > 0 do
Z = 2 + K3
v ot= v ~ 1
ol
l2=70*%}

Since this loop precondition reguires z to have the

“
v
0
(a1
r
0]
0N
pd
L2

»ae

3

SETR T

Generalizing Specifications For Uniformly Implemented Loops

value 0 and 2z assumes other values as the loop executes, the loop
is not closed for this precondition. Thus, before this program
can be verified using the above mentioned technique, this specif-
ication must be generalized to something like

{v>=0,k>=0}
while v > 0
+

where 20 refers to the initial value of the variable z.

The approach to this problem suggested here is one of
observing how particular changes in the value of some input vari-
able (e.3. z in the example) affect the result produced by the
loop body of the loop under consideration, Clearly in general, a
change in the value of an input variapble may cause an arbitrary
(and ‘seemingly unrelated) change in the loop bocdy result. 1In
many commonly occurring cases, however, the result produced by
the loop bedy is "uniform" across the entire spectrum of possible
values for the input variable. It is this property that will be
exploited in order to chtain a generalized specification for the
loop veing analyze? The generalizations consilered her=s have
th property that the loop is correct with resnhect to the gen-
eralization if ané only if the loop is correct with respect to
tae original specificaticon. Thus 1€ the leop i3z closel for the

Zomain ¢ the goeneralizaticn, the proaran can be nroven/2isp

ry

cwen

On.

¥

3y t2sting its correctness relativz to the genera® izat

*_ﬁ

Generalizing Specifications For Uniformly Implemented Loops

We remark that the general problem of finding a suitable
generalized 1loop specification has been shown to be NP-complete
(tlegbreit 77}, i.e. it appears quite unlikely that there will
ever exist an easily applied procedure for obtaining such gen-

eralizations that will work in all cases. On the other hand,

work presented here and elsewhere [Basu & Misra 76, Misra 79,

Basu 80], indicates that generalized specifications can bhe
ohtainad in a systematic manner for restricted classes of loops.
We fael that the notion of "uniform” loop body behavior discussed
in this =maper is valuable not only as a tool by which suzh jen-
eralizations may be obtained, but also as an attempt at a charac-
' terization of loops which are susceptible to routine analysis,

k and hence in this sense, easy to verify and comprehend.

The following section -“lefines the necessary nctation and

P
1=
o
0
o}

tarninnlogy an?d then introluces the idea of a generalize
spacification. 3ection 3 defines a urniformly implenental loop

an? ctates several implications of this definitinn for th2 preh-

e S

. it adiins f—— . -

Generalizing Specifications For Uniformly Implemented Loops

2. Preliminaries

We will consider a verification problem of the form

{<z,Xx> € D(£)}
while B(z,X) do
z,X := h’(z,X),h”"”"(2,X)
od
[<27X> = £(<20,%X0>)}.
In this problem, £ is a data state to data state function. The
data state consists of two variables, z and X. The notation D(f)
means the set of states in the domain of € (i.e. the set of
states for which £ is defined). The terms 20 and X0 refer to the
initial values of z and X respectively. The effect of the loop

-

body 1is partitioned into two functions h” and h”” which describe

the new values of z and X respectively.

The loop will be referred to as P. The data state to ata
state function computed by the loop (which, presumably, is not
explicitly xncown) will be denoted [Pl. Thus D([P]) is the set of
states for which P terminates. As a shorthand notation we will
use Y for the state <z,X>, and H for the data state to data state
function computed by the loop Hody, i.e.

F(Y) = H(<z,X>) = <h’(z2,X),h""(z,X)>.

Suppose the lood is not closed for D(f) in that this set
contains only a restricted collection of values (maybe only one)
9% z and that other intermediate values of z occur as the loop

iterates. ™e variable z will “e called the Xav variatle. QJur

goal here is to discover some more gzneral specification £° which

T ———— T ———

Generalizing Specifications For Uniformly Implemented Loops

includes each of these intermediate values of the key variable in
its domain. This generalization process (in one form or another)
is necessary for a proof of correctness of the program under con-

sideration.

Definition - P is correct with respect to (wrt) a function €
if and only if (iff) for all ¥ in D(f), (Pl(Y) is defined and

[Pl(Y)=£(Y).

Definition -~ A superset f° of f is a valid generalization of

£ iff if P is correct wrt £, then P is correct wrt f~*.

Note that the collection of supersets of f is partially
ordered by "is a valid generalization of."” The following theorem
defines one technique for constructing a valid generalization of

the specification function £.

Theoren 1 - A superset g »f f whose extension is defined by
(L) “B(Y) -> g(Y)=Y

is a valid generalization of f.

Proof - 3uppose P is correct wrt f. Let Y € D(g). If ¥ €

(£}, the 1loop handles the input correctly by hvpothesis., TIf Y
is not in D(f), we must have "3(Y) and 3(Y)=Y. Thus the program
and g map ¥ to itself and thus are in agreement. Consequently P

i3 correct wrt g, and g is a valid gereralization of f.

™Me theorem utilizes the fact that thie loop nust necessarily

a

comaute the {dentity furnction over inzuts vhere the loop npredia

caktz2 13 falsze. Combining this information with the Srogram

-5-

M

Generalizing Specifications For Uniformly Implemented Loops
specification f results in a valid generalization of f.

We note that if there does not exist a superset g of £ whose

extension is defined by (1), the theorem is vacuously true. This

would occur if an element Y from the domain of f satisfied “B(Y)
as well as f£(Y)#Y (this would imply that the program was not
correct wrt f). If there does exist a superset g of f whose
extension 1is defined by (1), the superset is unique. Throughout

this report, we will refer to the function g as the hase general-

ization of the specification f.

Definition - A valid generalization £° of f is adequate if

the loop is closed for D(f”).

The important characteristic of an adequate valid generali-
zation f° is that it can be used to prove/disprove the correct-
ness of P wrt the original specification f£. Since the loop is
ciosed for D(f”), P can be proven/disproven correct wrt £° using
standar? technigues [ills 72, Mills 75, 3asu & lisra 75, 1orris
& Wegbreit 77, Wegbreit 77, Misra 738]. Specifically, P is
correct wrt £° 1iff each of

(2) the loop terminates for all Y € D/(£”)

(3) ¥ € D(£*) & ~3(¥) -> £°(Y)=Y

(4) Y € D(f") & B(Y) =-> £7(Y)=f"({I(V¥))
ho0ld. If P is correct wrt £°, then P is necessarily correct wrt
any7 3ubset of £°, inztluding £. If 2 ic not corract wrt £°, then
3v the “Zefinition of a wvalid generalizaticn, 2 aust not e

ack wrt £,

cor

=

Generalizing Specifications For Uniformly Implemented Loops

Example 2 - The following program tests whether a particular
key appears in an ordered binary tree.
{success=FALSE}

while tree # NULL and “success do

if name (tree) = key then succes TRUE

s :=
= right(tree)
= le

elseif name(tree) < key then tree
ft(tree) £i

else tree
od
{success = IN{(tree0,key)}
The function IN(tree0,key) appearing in the postcondition 1is a
predicate which means "the ordered binary tree tree0 contains a
nocde with name field key." The boolean variable success 1is
chosen as the key variable since it i3 constrained to the value
FALSE in the input specification. Thus success plays the role of
z and the npnair of variables <tree,key> correspond to X in the
program schema discussed above. The specification function f is
£ {<FALSE,tree,key>) = <IN{tree,key),tree”,key’>
where tree” and key” are the final values of the variables tree
ani. Xey computed by the loop, resvectively. That is, since the
£inal wvalues of these variab'les are not of interest in this eoxam-
»le, we specify these €£inal wvalues so as o be autamatically
correct. Using Theorem 1, a valil generalization of this speci€-

ication is

J (<succass,-ree,key>) if “success then
<IN(tree,kev) ,tree”’ ,key”™>
else if tree=\NNLL or success then

<suncess,tree,lev>,

<succese or IM(trnaz,kev) ,tree’,kev’>,

0
A
W
[~
Q
Q
W
G}
[
-
'ad
s
14
[{]
-
-
bJ
3
v
]

-3

Generalizing Specifications For Uniformly Implemented Loops

In this example, the domain of the base generalization g of
f includes each value of the key variable, (i.e. FALSE and TRUE)
and is thus adequate. Consequently, this generalization can be

used to prove/disprove the correctness of the program,

In most cases, however, the heuristic suggested in the
theorem is insufficient to generate an adequate generalization.
Indeed, the base generalization is an adequate generalization
only 1in the case when the sole reason for the closure condition
not holding is the existence of potential final values of the key
variable (e.g. TRUE in the example) which are absent from D(f).
In order to obtain a generalization that includes general values
cf the key variable, an important characteristic of the loop body
which seems to be present in many commonly occurring loops will

be exploited.

3. Uniformly Implemented Loods

nefinition - Let ? be a loop of the form described above.
Let A be a set, and let 2 b2 the set of values the key variable z
may assume. Let
3 : Ax 2 -> 2

e an infix binary operator. The loop 2 ig uniforml'y implement~d
IS w4 o

with respect to (wrt) $° iff each of

]

(5) M{(z,X) => 1" (a $° =z.,X) a € nh” (z2,%)

{3} B(z,X) => h"7(a $° z,¥) W (z,\)

(7) ={=,%) -> 2{a $° z,%)

Generalizing Specifications For Uniformly Implemented Loops

Conditions (5) and (6) of this definition state that a
modification to the key variable by the operation $° causes a
slight but orderly change in the result produced by the 1loop
body. The change 1is slight because the only difference in the
result produced by the loop body occurs in the Kkey variable.
This Adifference 1is orderly because it corresponds precisely to
the same $° operation that served to modify the input wvalue of
the Kkey variable. Condition (7) specifies that such a modifica-
tion does not cause the loop predicate B to change from TRUE to

FALSE.

As a shorthand notation we define the infix operator $ as

a $ Y a $ <2,X> = <a $‘ Z,x>.

In this notation (5)-(7) are egquivalent to
(8) B(Y) -> a $ H(Y) = H(a $ Y)
an

3(Y) ~> B(a § Y).

Example 3 - Consider again the program £rom Ixample 1 which

multiplies natural numhers using repeated addition:

{z=0,v>=0,%>=0}
while v>0 do

.
’

[

Lat z be the X2y variable. The pair <v,%> corresponis to the
variable ¥ ~ccurring in the above scherma. The loon is unifornly

implarented wrt +, where A An? 2 are beth the cet of naturzal

Generalizing Specifications For Uniformly Implemented Loops

numbers. Note that adding some constant to the input value of 2z
has the effect of adding the same constant to the value of z out-
put by the 1loop body. Now consider the following alternative
implementation of multiplication:

{z=0,v>=0,k>=0}
while v>0 do

if z<k then Z := 2 + Kk
elseif z=Kk then z = z * 2 * y
else z :=z - k fi;

v = v -1

od
{z=v0*k].

Again, let z be the key variable. This 1loop is not uniformly
implemented wrt +. Intuitively, this is due to the high degree
of cdependence of the loop body behavior on the value of the key
variable. The result of this dependence is that adding some con-
stant to the value of z causes an unorderly change in the value

of z output by the loop body.

The reader may wonder if the second nultiplication program
above might be wuniformly inplemented wrt some oneration other
than +. e remark that any loop is uniformly implemente? wrt 3~

: A Z -> 2 defined Yy

-

<

a

z z
for 211 a € A an2 z € Z. Tor the purnose of this revort, we rule
out such trivial operatinns, i.e. ve require that for any z & 2,
there exizts scme a £ A such that

a$° z # z.

7ith this assumntion, thern 1oes not exist an onaratiosr urt whieh

the secnnd of the ahove leoops is unifeorm'vy inmplementad (or nore

Generalizing fpecifications For Uniformly Implemented Loops

briefly, the loop is not uniformly implemented). To see this,
suppose the loop were uniformly implemented wrt $° : A x 2 ~> Z.
Select z=0, a € A such that a $°“ 0 # 0, and k=a $° 0. We evalu-

ate condition (5) as follows:

B(z,X) -> h“(a §$° z,X) =a $° h’(z,X)
i.e. v>20 <> h“(a $° 0,<v,k>) = a $° h"(0,<v,k>)
i.e. v >0 ~> h*(k,<v,k>) =a $° h”(0,<v,k>)
i.e. v>0 -> k*2*y =a $° h’(0,<v,k>)

which implies

v>0 & k>0 -> k*2*y

]

a $° k.

Since the term k#*2*v will vary with different values of v where k
is positive, and a $° k is independent of v, this condition is
false and thus (5) does not hold. We conclude that the second
multiplication program above is not uniformly implementeld. That
is, there does not exist a nontrivial modification that can be
applied to the variable z which always results in a slight and

orderly change in the result producecd bv the locp body.

The results presented here are based orn the following ‘lamma
concerning uniformly implemented loops. The lemna describes the
output of the loopn fcr some modified input a $ Y (i.e. [2](a 35
v)) in terms of the output of the loon for the inndut ¥ (i.=2.
[Pl1(Y)) and the output of the 1nop for the input a $ [Pl (Y) (i.e.

(Pl (a2 3 [P](Y))).

~ .

Lemma 1 - Let P be uniformly implemente” wrt 3%, Then

() Y e o([]) =-> [Pl(a $ ¥y=[P)(a 3 [P](¥)).

Generalizing Specifications For Uniformly Implemented Loops

Proof - We use induction on the number of iterations of P on

Y. For the base case of 0 iterations, [?)(Y)=Y, and the lemma
holds. Suppose it holds for Y values requiring n-l1 iterations
where n > 0. Let Yl require n iterations. Since n > 0, B(Yl)
holds. By (7), B(a § Yl). Note that H(Yl) requires n-1 itera-
tions on P; thus by the inductive hypothesis

[Pl(a $ H(Y1l)) = [Pl(a § [P](H(YL))).
Due to the uniform implementation this is

(PI(H(a § Y1)) = [Pl(a $ [P](H(Y1))).
Using the loop property B(Y) -> [P](Y)=[P](H(Y)) on both sides we
get

[Pl(a $ Y1) = [P]l(a $§ [P](YL)).

Thus the inductive step holds and the lemma is proved.

The general idea behind our use of the lemma is as follows.
Suppose the wvalue [P](Y) is known for some particular Y. I.e.
suppose we know what the loop produces for the input Y. 1In addi-
tion, supvose that, given the result ([Pl(Y), the quantity [P]{(a $
[PI(Y)) is also known. ith this information, we <c¢an then use
Lemma 1 to "solve" for the (possibly unknown) value [P} (a $§ Y).
Tais additional information concerning the input/ocutput behavior
of the 1loop can be used as an aid in constructing a valid gen-

eraiization of the specification f.

"ow can we find the value [P](Y) an? then the value [P)l(a 3
(21(Y)) for some Y? The key 1lies in assuming the loop P is
zorrect wrt £, If P is not correct wrt I, anv gereralizaticn of

€ ottained by the technigue will be a vilid generalization Oy

-13-

Generalizing Specifications For Uniformly Implemented Loops

definition. Under this assumption, [P](Y) is known for Y € D(f),
i.e. Y € D(f) -> [P](Y)=£(Y), and hence Lemma 1 implies

(10) Y € D(f) -> [Pl(a $ Y)=[Pl(a § f(Y)).

Consider now the base generalization g of f defined in
Theorem 1. Recall that g is simply f augmented with the identity
function over the domain where the loop predicate B is false.
Assuming as before that P is correct wrt £, P is then correct wrt
g by Theorem 1l; hence Y € D(g) -> [P](¥)=g(Y). Thus (1l0) implies

(l11) Y e D(f) & a $ £(Y) € D(g) -> [P](a $ ¥)=g(a $ £(Y¥)).
Thus we can "solve" for the behavior of the loop on the input a $
Y, assuming Y € D(f), a $ £(Y) € D(3) and P is correct wrt f.
This suggests that the superset f° of f whose extension 1is
defined by

(12) Y € D(f) & a § £(Y) € D(g) -> £7(a $ Y)=g(a § f(Y))
is a valid generalization of £. DBefore giving a formal proof of
tais result, however, we first consider the question 2f the
existence of such a suverset. Specifically, it couls be that for
some a and Y satisfying Y € D(f) and a § £(Y) € D(g), that a $ Y
€ D(f) and £(a $ ¥) #g(a $ £(Y)), which would inmgply £(a § VY) ¥#
£°(a $ Y). In this case, a valid generalization of £ zase® on
{12) cannct exist (it would have to ke ambiguously lefin2d). The
following theorem states tha* this implies P is not correct -7t

f'

Te2o0ren 2 - If P i35 correct wrt £, thare exists a ~iperset

£ of ¢ whose oxtansion ig defined bv (12), i.a.

Y€ N(F) & a % E(Y) & 0(3) -> £7(a % Y)=q(x S £(¥)).

~14-

Generalizing Specifications For Uniformly Implemented Loops

Proof - Let f° be the function computed by the loop, i.e.
[P]. Since P is correct wrt £, P is correct wrt g, and £ is a
superset of both £ and g. By the lemma
£°(a $Y) = £°(a $ £°(Y))
for all Y € D(f). Since £°(Y)=£(Y) for Y € D(f}) and £°(Y)=g(Y)
for Y € D(g), (12) holds. The subset of £° which contains £ and

whose extension is defined by (12) satisfies the theorem.

The following theorem is the central result presented here.
The theorem formalizes the use of Lemma 1 in the manner suggested
above, i.e. that the superset described in the previous theorem

is a valid generalization of the original specification.

Theorem 3 ~ A superset £° of f whose extension is defined by
(12)1 i--eo
Y € D(f) & a $ £(Y) € D(g) ~> f°(a $ Y)=g(a $ £(¥)),

is a valid generalization of f.

Proof - Suppose P is correct wrt £. Let Y € D(f) and a §
f£(Y) € D(g). By Lemma 1 [P)(a $ ¥Y) = [Pl(a $§ [Pl(¥Y)). Since P
is correct wrt f this is [P](a $ ¥) = [P](a § £(Y)). By Theorem

L,

'

is correct wrt g. Using this, the equality can be written
o)

as [Pl(a 3 ¥) =3(a $ £(UV)). Substituting using (12) vields

f“(a $ Y). Thus P and f° are in agreement on the

[}

[Pl1¢a 3% Y)
input a 3 Y and consedquently are in agqreement on any inout in
D(f°). iHence ? is correct wrt £° and thus £ is 2 valid general-

ization of £.

-1T=

FONEY YTy

Generalizing Specifications For Uniformly Implemented Loops

The significance of Theorem 3 is that it provides a guide-
line for generalizing the specification of a uniformly imple-
mented loop. If the loop is closed for the domain of the result-
ing specification, the generalization can then be used to
prove/disprove the program correct wrt the original specifica-

tion.

4. Applications

In this secti~ . we illustrate the use of Theorem 3 with a
number of example programs which fall into either of two
subclasses c¢f uriformly implemented 1loops. The subclasses
correspond to the two possible circumstances which can occur when
a $ £(Y) of condition (12) belongs to the set D(g): the first,
because "B(a $ f(Y)), and, the second, because a $ f(Y) € D(f).

In each of these situations, condition (12) takes on a

particularly sinple form.

Definition - A uniformly implemented lonp satisfying
“R(Y) -> “B(a $ V)

ic a Type A loop.

i
12
0
i
(a4
1)
[7:]
(2
¥
w
T
91

Jbserve that this condition 2along with (7) inii
Tvoe A uniformlv implemented loon satisfiee

B(Y) <=> Bl(a $ Y),

(a4

i.e.

ke value of the loopn predicate 2 is independent of a chanrge

tn the 2ata state by the operator $.

ud

Generalizing Specifications For Uniformly Implemented Loops

The intuition behind a Type A uniformly implemented loop is
as follows. Whenever an execution of a Type A loop terminates
(i.e. "B(Y) holds) and the resulting data state is modified by
the operator $, the result is a new data state which, when viewed
as a loop input, corresponds to zero iterations of the loop (i.e.
the predicate B is still FALSE despite the modification). This

property is reflected in the following corollary.

Corollary 1 - Let P be a Type A loop. A superset f° of £
whose extension is defined by
(13) Y e n(f) -> £°(a $ ¥)=a $ £(Y)

is a valid generalization of f.

Proof - The proof consists of showing that (12) anéd (13) are
equivalent for a Type A loop which is correct wrt £. 3By Theoren
3, the corollary then holds. Let P be a Type A loop which is
correct wrt £, A consequence of the correctness proverty is that
"B(E£(Y)) for all ¥ € D{(f). Since P is a Type A lcop, this im-

plies "3(a $ £(YV)). Thus a $ £(Y) € D(3) and g(a $ £(Y))=a $

t:

f(¥Y). Zonsequently (12) and (13) are ecuivalent.

Qf course, once a generalization £° has heen obtained vwia
Zcrollary 1, there ig no reason vhy that result cannct be fef
back into the corollary to obtain a (possibly) further qgenerali-
zation f£°° (using £° for £, £°° for £°). T™iis notion suggests

the fnllouing general case of Cornllarv 1.

Corollarry 2 ~ Let P e a Type A lonp. N superset 7 ol £

whase z2itansisn is 2efined by

-17-

———

Generalizing Specifications For Uniformly Implemented Loops

Y € D(f) & n>0 ->
£ (als(a28 ... (an$yY) ...))=al$(a2s ... (anS$€(Y)) ..)

is a valid generalization of £.

Example 4 - Consider the following program to compute ex-
ponentiation.
{w=1,c>0,d4>=0}
while 4 > 0 do
if odd(d) then w :=w * ¢ fi;

c := c*c; d:=4/2

od
{w=c?0 " 40}

The infix operator © appearing in the postcondition represents
integer exponentiation. 1In this example, w plays the role of the
Xey variable 2z, and the pair <c,d> corresponds to the variable X.
we now consider wrt what operation the loop might be uniformly
inplemented. For any operation $%, (7) holds (because w does not
appear in the loop predicate) as does (6) (because the values
produced in ¢ and 4 ars independent of w). Furthermore, (5) nust
nold for inputs which “dypass the2 updating of w., Thus the unifor-
nity conditions reduce to
2> 0 & o0dd(d) -> (a $° w) * o = a $° (1 *t c)

Mya to its associativity, it is clear the oop iz uniforalv in-

pDlanmented wrt *, where the ¢

()

ts A an? T are th2 set of integerrs,

r,

Sinz2 the Xey variable Jdoas not anpear in the 1o0n nredlicate, it
i3 necessarily a "ypn2 A loop. Let >0 and 1>=0. The specifica-
tinn function %=2r2 i3

A - »

E(<l,c,i>) = <c A2t 3%

whare ¢? and 77 are the final) values cormputed wy the 1oop fcr the

-13-

FM
T

s ey i

r-r—-——————-———-—-—-——-—-fm_._r

Generalizing Specifications For Uniformly Implemented Loops

variables ¢ and d. Applying Corollary 1,

£’ (<a*l,c,d>) = <a*(c © d4),c”,3°>
is a valid generalization of f. Since this holds for all a, the
definition of £ can be rewritten as

£°(<w,c,d>) = <w*(c © 4),c”,d">.
The generalization £ is adequate and can thus be used to test
the correctness of the program wrt the originral specification.

Applying (2), (3) and (4) from above, these necessary and suffi-

cient verification conditions are
- the loop terminates for all c>C, ¢>=C,
- d=0 -> w=u*(c ~ &), and
- u*{c © &) is 2 loop constant (i.e. c0 " 40 = w*(c © &) is
i l a loop invariant),
raspectively. In Section 5, we will discuss a simplification of

the 1last of these verificatiocn conditions which applies for uni-

fornly implenented loons.
nrvarmnle S [Miisra 7% - The follewing progran constructs the
el ra— —
creorler travarszal of a binary tree with root nnile r. The pro-
jran jizes 2 sztack varianle st and records the travercal In & 2~
Iannce variabla ca27,
! svere 1 2 i d aY o)
LZ29="ULL, st=(r) /* 3tact st ccntaing only the reot node r * /)
yhile st # TTRETY o
D <= 3% /% pop the top cff the gteck %/
seq 1= 327l oasme(n); /% concatanate name of D to sec
L8 riahe (oY £ UIL taen £t <= righe () fip /* ouz onto st */
T . XA d i - - i
LF 13fe () # UIL then st <= Tefr(n) {1
e =L
.
-
TeaT=omoamran ())
™y Ciymmh 3 A D2NTANTTID(r aNTAAria in “a Bl olak=irle) s tnbik ik Ke) - e
Tt funchicn 27EOANROR(r) arzeariag in She zcentgonditicn iz ®he
U R P

Generalizing Specifications For Uniformly Implemented Loops

sequence consisting of the preorder traversal of the binary tree
with root node r. Let seq be the key variable. The same reason-
ing employed in the previous example indicates here that the loop
is uniformly implemented wrt ||, where the sets A and Z are the
set of all strings. It 1is a Type A loop. The specification
function is

£ (<NULL, (r)>) = <PREORDER(r),st”>.

»

Again, the notation is used to represent the final values of
variables that are of no interest. Applying Corollary 1 we ob-
tain

£°(<seq, (r)>) = <seq||PREORDER(r),st”>
as a valid generalization of £f. 1In this case, £° is not adequate
since it does not specify a behavior of the loop for arbitrary

values of the stack st. We will return to this example after

considering another subclass of uniformly implemented loops.

NDefinition - A uniformly implemente? loop satisfying
“3B(Y) -> a $ Y £ D(f)

is a Type B loop.

as f£nllows. “Thenever an 2xecution of a1 Tyme 2 Tood terminatas
(i.e. "3(Y) hnlds) and the resulting Jdata ctate is wodified by
the operator 3, the result is 2 new data state which is a "valii®
starting point for a new execution of tihe loop (i.e. this new
3tate i3 in D(E)). This nronerty is reflacted in the followini

corcllary.

S ——————

R e b i et A e e b e

Generalizing Specifications For Uniformly Implemented Loops

Corollary 3 - Let P be a Type B loop. A superset f° of £
whose extension is defined by
(14) Y € D(f) -> £°(a $ Y)=f(a § £(¥Y))

is a valid generalization of f.

Proof - The proof consists of showing that (12) and (14) are
equivalent for a mype B loop which is correct wrt f. By Theorem
3, the corollary then holds. ©Let P be a Type B 1loop which |is
correct wrt f. A consequence of the correctness property is that
“B(f(Y)) for all Y € D(f). Since P is a Type B 1loop, this im-
plies a $ f(Y) e D(f). Thus a $ £(Y) € D(3) and g(a $ £(Y))=f(a

$ £(Y)). Consequently (12) and (14) are eguivalent.

As before, a general case of this corollary can be stated

which corresponds to an arbitrary number of its applications.

Zorollary 4 - Let P be a Type 3 loop. A superset £° of €
whose extension is defined by
Y € D{f) & n>0 ->
£7(al3(a2s(...5(andY)...)))=£(als$f(a2$s(..$E(an3f(¥))...)))

is a valid generalization of f.

Zxanple 3 (continued) ‘'l now consifer the nroblem »f

further generalizing the derived snecification in the previous
example. The variakle for which the locon is not closed, st, will
now 9%e the ey variable. ~Consider an operation a $° st that has

the effect of adding an elament a to the stack s:. TJelnre Yeing

more nrecise about this operatinn, we consider kow the loon hody

wOrks, an” how its output Jlerends on the value of the H2v vari-

[}

b]

T
[}

N

e

Generalizing Specifications For Uniformly Implemented Loops
able st.

We observe that the loop body behavior relies heavily on the
characteristics of the node on the top of the stack. Consequent-
ly, a modification a $° st to st which pushed a new node a onto
the top of st would not cause a slight and orderly change in the
result produced by the loop body and the uniformity conditions
(5)-(7) would not hold. However, because the loop body behavior
seems to be independent of what lies underneath the top of the
stack, we suspect the loop is uniformly implemented wrt ADDUNDER,
where A is the set of binary tree nodes, Z is the set of stacks
of binary tree nodes, and a ADDUNDER st is the stack that results
from adding a to the bottom of st. Conditions (5)-(7) for this

operation indicate that, indeed, this is the case.

Let f be the generalization £ from the previous example.
In keepning with the convention Jdescribed above, since st is now
the Xey variable, we will reverse the order in which the two
variables appear in the data state, i.e. we will write <sit,seg>

ingstead of <seq,st>.

The program is a Type B uniformly inplemented looo since
SE=EIPTY ~> <a ADDTIDER st,seqg> € D(E)
where a is a nole of a binaryv tree, an? specifically
(13) st=ZiPTY -> £(<a ADDUIDIR st,seq>)=<st”,seq||PRECNNTR(a)>.
A»plving Corollary 4, if (r,an, ... ,al) is 2an arbitrary stack
(withh v on ten, a2l on the "ottonm)

£7(<{r,an, ... ,al),s2Q>) =

R

S W

h

Generalizing Specifications For Uniformly Implemented Loops

£°(als(a28(... $(an$<(r),seq>) ...))) =

f(al$£(a2$f(... S$f(ans$f(<(r),seg>)) ... })) =

f(al$f(a2sf(... $f(anS<st”,seq| |PREORDER(r)>) ...))).
Recall that st” refers to the final value of st computed by the
loop. The loop predicate indicates this will always be the value
EMPTY. Hence (15) can be applied from inside out giving

f(al$f(a2$f(... $<st”,seq||PREORDER(r) | |PREORDER(an)> ...)))

<st”,seq| | PREORDER(r) | | PREORDER(an) || ... ||PREORDER(al)>.
This resulting specification can be used to prove the correctness

of the program.

”~

Example & [Gries 79° - The following program computes
Ackermann®s function using a sequence variable s of natural
numbers. The notation s(l) is the rightmost element of s and
5(2) is the second rightmost, etc. The sequence s(..3) is s with

5{(2) and s{(l) removed.

n>=0}
vaile size(s) # 1 do
if s(2)=0 then s:=s(..3)|{<s(1)+1>
elseif s(l)=0 then g:=5(..3)|[<s{2)-1,1>
else s:e=s(..3)]{<s(2)-1,8(2),s{l)-1> £i
oA

{S=<_A(mrn)>}

The function A(m,n) appearing in the postcondition in Ackermann’s
function. The specification function is

£(<s(2) ,s(1)>)=<A(5(2),s(1))>.
Let s be the Xey variable., Asg the 1oon bodv behavionr is indenen-

Jent of the leftmost portion of s, the loen i3 uriformly imple-

Generalizing Specifications For Uniformly Implemented Loops

mented wrt |, where A is the set of natural numbers, Z is the set
of sequences of natural numbers, and a|s = <a>||s. The program
is also a Type B loop. By Corollary 4,
f°(<s(n),s(n-1), ... ,s(l)>) =
£°(s(n)$(s(n=1)$(... $(s(3)$<s(2),s(1)>) ...))) =
£(s(n)$E(s(n-1)$£(... S£(s(3)$£(<s(2),s(1)>)) ...))) =
f(s(n)$€£(s(n-1)$£(... $£(s(3)$<A(s(2),s(1)>) ...))) =
£(s(n)S$E(s(n-1)$£(... $£(<s(3),A(s(2),s(1))>) ...))) =
f(s(n)S$f(s(n-1)$£(... $<A(s(3),A(s(2),s(1)))> ... i))

<A(s{n) ,A(s(n-1), ... ,A(s(3),A(s(2),s(1))}) ...))>

is a valid generalization of f.

5. Simplifying the “Iteration Condition”

The view of WHILE loop verification presented here is one of
a two step Ddrocess, the first step being the discovery of an ade-
Jguate valid generalization £° of the loon specification £, the
seconi being the proof of 3 basic conditions (i.e. (2)-(4)) based
on this generalization. We have seen that the uniform nature of
a2 loop imnlementation may be ucsed in the first step as an aid in
li=covering an appropriate generalization. 1In this section, we
will exploit the same loop characteristic to substantially sim-
Plify one of the conditions which must be proven in the secon”

step of this process.

The wverification condition of interes* is (1) ahove, i.e.

Y € D(£7) & 3(Y) => £°(V)=£°(4(¥)),

-24-

Generalizing Specifications For Uniformly Implemented Loops

and is labeled the iteration condition in [Misra 78). This c¢on-

dition assures that as the loop executes, the intermediate values
of Y remain in the same level set of £°, i.e. the value of £° is
constant across the loop iterations. Previously we argued that
if P is uniformly implemented wrt $°, a change in the key vari-
able by $” causes a slight but orderly change in the result pro-
duced by H. Roughly speaking then, the behavior of H is largely
independent of the key variable. 1If £° is chosen so as to be
equally independent of the key variable, and the above condition
holds for ¥Y=<z,X> where X is arbitrary but the Xey variable z has
a specific simple value, we might expect the condition to hold
for all Y. Such an expectation would be hased on the belief that
the truth or falsity of this condition would also be largely in-

dependent of the key variable.

we formally characterize this circumstance in the £ollowing

definition.

Nefinition - TLet P he a loop of the form described above. A

genaralization £° of f is represented by £ iff

(13) Y € n(f) & 2(Y) =-> £ (V)=£"((V))

(17) Y € n(€°) & B(Y) -> £7(V)=£7(5(Y)).

rd

“Mug if £ is renresented by f, corndition (16) can ke use”?

in »lace of the iteration condition (17) in proving the lcop is

aorrest wit £° (and hence wrt £). The signifizance of this si-

tuatinon is that the itaration condition can be tested vith the

- e —

Generalizing Specifications For Uniformly Implemented Loops

key variahle constrained by initialization (as prescribed in
pD(f)). In practice, the result is one of having to prove a sub-

stantially simpler verification condition.

The following theorems state that the use of Corollaries 2
and 4 lead to generalizations which are represented by the origi-

nal specification.

Theorem 4 - Let P be a Type A loop. Suppose f£° is the valid
generalization of f Adefined 1in Corollary 2. Then £° s

represented by f.

Proof - Suppose (1l5) holds and select some arbitrary Y* from
D(£°) satisfying B(Y’). Thus there exists al, ..., an € A, n>=0
and ¥ € D(f) such that

¥v*= 2al$(a28(... $(an $ Y) eee))e
S3v the definition of a Type A loop, w2 must have B(Y). Anplying
the Aefinition of £° yields
F7(v°)=als$(a2%(«.. $(ans$f (¥) ...))
which is

=al3(a28(... $(anSE7(E(Y)) ... }))

T
=
-

by (1€) since 2(Y) holds. Since H(Y) € N(f”), there exigts
eeesr M € 1A, m>=0, and Y1 € D(f) such that

1Y) =bl$(bL2%(... $(bm$ Y1) ...)).
Furthernore,

EA() Y =h1IS (023 (L. 3(OMSE(YL)) ..))

£e(2%)= AlS(eoe $(ANS(BLIS(coe S{MST(YL)) eer D)) o0)

-26-

Generalizing Specifications For Uniformly Implemented Loops

which is
=f“(al$(... $(an$(blS(... $(bm$ YL) ...))) ...))

from the definition of £“. Thus

£2(Y°)=£° (al$(... $(an$H(Y)) ...))
which is
=2f°(H(al$(... $(an$ ¥) ...)))
from the uniformity condition (8). Hence
EX(Y")=£7(2(Y"))

and the theorem is proved.

Theorem 5 - Let P be a Type B loop. Suppose f° is the valid
’ generalization of f defined in Corollary 4. Then £° |is

represented by f.

Proof ~ Suppose (16) holds and select some arbitrary Y° from !

D(E®) satisfying 3(Y"). Thus there exists al, ..., an 2 &, n>=0
and Y € D(f) such that
Y%= al$(a2$(... $(an § Y) e M)
e make the assumption that B(Y). nNtherwise, by the definition
of a Type 2 loop, the term an $ Y can be replaced hy annther Y €
D({f). Since B(Y"), this process can be continued untiy Vv* is
written in the form above, with ¥ & D(f) and 3(Y). A»plvirg the
Jdefinition of £f° yields
€2 (VY)=£(alSf(a2$f(... SE(APSE (Y)) eee)))

which 1is

=£(218F(a2%(... SE(anSE° (I (VY)Y .o 1))

2y (13) sinc2 3(Y) hel?s., Since (YY) € D(Ef”), there eaxists w1,

v

me A, a>=0, and Y1 @ ©(€) such that

00y

-27-

. e

.——....A.._.a-—-—-,.—-—

Generalizing Specifications For Uniformly Implemented Loops

H(Y) =bl$(b28(... $(bm$¥Y1) ...)).
Furthermore,
£7(H(Y))=f(b1SE(b2SF(... SE(bmSE(YL)) ...))).
Hence, continuing from above
£7(Y")=£(al$f(... $Ef(an$E(DISE(... SE(bmMSE(YL)) ...))) «.oe))
which is
=f* (al$(... $(an$(b1$(... $(bm$¥1) ...))) ...))
from the definition of £°. Thus
£9(Y°)=£€" (al$(... $(an$H(Y)) ...))
wvhich is
=f“(2(als$(... $(an$ ¥) ...)))
from the uniformity condition (8). Hence
£2(Y7)=£7(H(Y"))

and the theorem is proved.

Example 7 - Consider the exponentiation program of Example
4. The generalization obtained from Corollary 2 is
£°(w,c,d>=<u*(c™d) ,c”,a4">,
Since £° is represented by £, the iteration condition correspend-

iny to (16)

A50 & 024 {3) ~> ¢*d

c*((c*c) " (3/2)) &

4>0 & even(?) -> ¢”4 (c*c) " (3/2)
can be used in place of that corresponding teo (17)

A30 & 01 () > wk(c™3)

(v*c) *((c*c) " (1/2)) &

>0 & aven{?) ~> wk(c”A) we((c*c) " (/).
The henefite of this simplificatior 2re more ctrikiny for more

comnlen types of kev variahles., To illustrate, consifer the dnro-

O RSOV PRY | J

—

Generalizing Specifications For Uniformly Implemented Loops

gram to compute Ackermann®’s function in Example 6. The generali- l
zation ohbhtained from Corollary 4 is
£°(<s(n),s(n-1), ... ,s(l)>) =
<A(s(n) ,A(s(n-1), ... ,A(s(3),A(s(2),s5(1))) ...))>.
Since £° is represented by £, the iteration condition
m=0 -> <A(m,n)>=<n+l> &

m#0 & n=0 -> <A(m,n)>=<A(m-1,1)> &

n#0 & n¥0 -> <A(m,n)>=<A(n-1,A(m,n-1))}>
can he used ‘n glace of
s(2)=0 ->
<A{s3(n),Al{s(n-1), ... ,A(s(3),A(s(2),s(1))) ...))>=
<A(s(n} ,Als(n-1), ... ,A(s(3),s(H)+1) ...))> &
s{2)#0 & s(1)=C -~>

<A(s(n) ,A(s(n=-1), ... (A(s(3),a{5(2),s(1))) ...))>=

(3]

<A(z{n),A(s(n=-1), .o JA{S(3)A(S(I=1,2)) oo))>

-

AR5 R) A8 (R=1), eee S3(S(3),A(5(2),5(2))) vu.))o=

) A (n=1Y, eee A0S (3) (D) -1, 28 ({8,310 =0))F . D))

Generalizing Specifications For Uniformly Implemented Loops

straint on this operation. An effective strategy, therefore, is
to use (5) as a guideline to suggest candidate operations. Ccon~
ditions (6) and (7) must be proven to show the loop is uniformly

implemented wrt some particular candidate.

:

Often the modification to the key variable 2z in the 1loop
body is performed by a statement of the form
2 := 2 # g(X)
for some dyadic operation # and function g. 1In this case, condi-
tion (5) suggests the loop may be uniformly implemented wrt # or
some directly related operation. For example, if ¢ 1is associa-
tive, condition (5) holds for #. 1If § satisfies
(a #b) #c=(attc) #p
(e.3. subtraction), and an inverse #° of # exists satisfying
atb=¢c<->hi"c=a

(e.g. a?dition if 4§ is subtraction), condition (5) holds for 4~°.

Another commonly occurring case is when the Efuture values of

the key variable z are independent of ¥, i.e.
n(z,X1) = h*(z,%X2)

for all z, X1 and X2. This situation arises rmost frequently when
z 1is scme Jata structure which varies dvnamizally as the 120D
itarates. Typically, there exists some particular aspect or por-
tion of the data structure (e.g. the tod of 2 stack, the end of a
sa2quence, the leaf nodes in a tree) which guifes 1its nodifica-
tion. A useful heuristic which can be emnlov=d in this cir-
cumstance is to consiler only operations which naintain (i.e.

<22z iavariant) this particnlar asrpeckt of the data structure.

-
o

-30-

e ey

Generalizing Specifications For Uniformly Implemented Loops

Selecting such an operation $° guarantees that the "change" ex-

perienced by the data structure in the loop body will be indepen-~

dent of any modification $° and thus insures condition (5) holds.

In any case, recognizing uniformly implemented 1loops and
determining the operation wrt which they are uniformly implement-
ed is often facilitated if the intended effect of the 1loop body
(as regards the key variable) is documented in the program source
text. Such documentation abstracts what the loop body does from
the method employed to achieve this result and thus makes

analysis of the loop as a whole easier.

To illustrate, consider the following program to compute the

maximum value in a subarray ali..n] of natural numbers:

m := 0;

while i <= n do
It m < afiY then = := ali)] fi;
T :=1i+1 —
od

{m = maxIMUM(a,i0,n) }.

1£ the effect on m in the loop bhody were dccumented as

m o:= MAX(m,ali]),
its updating would be of the form m :=m % al[i] an? the heuristic
Jiscusse? above could be onployed to helo -letermine that the lccep

is uniformly inplemented wrt # = “AY.

7. Related “ork

The first worX on generalizing functioral specificaticns Zer

1ocos anpears in [3asua & Misra 76]. These results are refined in

-31-

Generalizing Specifications For Uniformly Implemented Loops

[Misra 78] and are studied in considerable detail in [Misra 79]}.
The major contribution of this research seems to be the identifi-
cation of two loop classes or schemas which are "naturally prov-
able.” The first class is called the accumulating loop schema
and can be viewed as a (commonly occurring) special case of the
Type A loops discussed here. Specifically, a program in the ac-
cumulating loop schema with associative binary operation $° in
the sense of [Basu & Misra 76] is necessarily uniformly imple-
mented wrt $° and meets the criterion for a Type A loop presented

here.

The second of these classes is called the structured data
schema. A loop in this class is uniformly implemented wrt an
operator which adds an element to the data structure being pro-
cessed in such a way that it is not the "next" element to be re-
moved from the structure (e.g. recall the use of ADDUNDER in the
tr2e traversal example). A loop in this class necessarily meets
the criterion for a Type 3 loop presented here. The program to
compute Ackermann”s function does not fit in the structured data
sciema. e remark that the analysis presented here relies on tha
loop Dbody computing a function, i.e. it relies on the lonp body
b2ing leterministic. “~Tonseguently, the above comments Jdo not ap-
ply to the non-3leterministic structured data loons analyze? in

tisra 79}.

In (Misra 73] the author states that the important commen
feature netween these »rojram classes is that " ... they act upnn

Jata in a “uniform” manner; changes in the input data leal %o

Generalizing Specifications For Uniformly Implemented Loops

certain predictable changes in the result obtained."” The work we
have described can be viewed as an attempt to characterize this
commonality and to generalize the work in [Misra 79] based on

this characterization.

More recently, [Basu 80] considers the problem of generaliz-
ing loop specifications and uses the idea of a loop being "uni-
form over a linear data domain." One difference between this
work and that presented here is that Basu considers only programs
in the accumulating loop schema (in the sense of [Basu & Misra
76] without the closure requirement). More importantly, Basu’s
idea of uniform behavior is based on thzs behavior of the loop as
a whole and seems to be largely indevendent of the loop body.
Dur aprroach relies solely on the characteristics of the 1loop

nody.

tisra points out in [Misra 78, !isra 79] that the iteration
condition for his structured 4data schema can ke simplifi=zd in a
manner similar to that presented? here; our results sheow that the
same simplification can be anplied to his accunmulating loop sche-
ma. Again, an appronriate view of our research is one of gen-
eralizirng this earlisr weori by investigating the theory ~hich un-

derlies these phenomenon.

3. Sumnary an! Conclusions

It is f£21t that tha ey to reading, understanding an? veri-

Zving oarogram loows is generalizing th

»

(1]

behavisr cf the loop over

a restricted set of inputs to that over a more Jeneral 2t of in-~

~33-

Generalizing Specifications For Uniformly Implemented Loops

puts. The view of this generalization process presented here is
one of ascertaining how changes in values of particular input
variables affect the subsequent computation of the loop. This
process is facilitated if these changes correspond to particular-

ly simple modifications in the result produced by the loop body.

Of course, the simplest possible modifications in the result
produced hy the loop body would be no modifications at all, i.e.
the output of the loop body (and hence the 1loop) 1is completely
independent of changes in these input variables. This situation,
however, occurs rarely in practice since it implies that the 1in-
put values of these variables serve no purpose in view of the in-
tended effect of the loop. It is felt that the definition of a
aniformly implemented loop presented hevre is the "next best" al-
ternative, and yet a large number of commonly occurring loops

seem to possess this property. The definition states that in

(4]

terms of the execution of the loop body, prescrided changes in

the innut value of the key variable affect

o}

nly the £inal value

~f the key variable; all other €inal values

fu
LA

e 1indervendent of

the chang2. Just as impnrtantly, the modification cause? in the

-~

Zinal value of the key variable is necessarilv the sane as the

change in its correcsnonding innut value., This preparty is analo-

[Y9]

gous: to that possessed by a function of 1 wvariable with unit
slene in analytic geometry: increasing the input argument Hy

sem2 Zorstant causes the function valuz to 22 increase? by exact-

(1)
rn
(9]
Ie)

1 ®h2 same guantity. Taken tngether, these {acters acceunt for

[0}

thie olzasing synnmetry ha2tween $ and ! in confision (3).

—

ST T T T T TN R i G BT O, e S

Generalizing Specifications For Uniformly Implemented Loops

Viewed as a verification technique for uniformly implemented
loops, the procedure described here can be thought of as
transforming the problem of discovering the general loop specifi-
cation into the problem of discovering the operation with respect
to which the loop is uniformly implemented. Clearly, this is of
no benefit if the latter is no easier to solve than the former.
In many cases, however, it seems that simple syntactic checks are
sufficient for identifying this operation. For example, in the
tree traversal program, the fact that the loop body does not test
the stack for emptiness [Basu & Misra 76] is a sufficient condi-
tion for the loop being uniformly implemented with respect to

ADDUMNDER.

t is felt that the notion of uniformly implemented lcops
may have an application in the program ‘evelopment process.
Specifically, when designing an initialized loop to conmpute come
function, the »srogrammer should attempt to construct the losand in
such 3 way that it is uniformly implemented with respect to scme
2asily stated operation. Our work indicates that these loops are
susceptible to a rather routine form of 2nalysis., Purthermore,
implementing a 120p in a uniform fashion recuires maintaining a

c2rtain amount of ind2pendence between progran variablas (

O
2

perhaps portions of program variables in the case of structures)
and a simple dependence bhetween the innut/cutput values conruked
~7 the loep bhedy, Such programs are “esiravle since the case
with rhich a loep can be undaerstne? iz2penis

1
argalvy on £he corm-

Pla2xity o2f the interactinns anl interceanections amon3 progranm

~35-

e ey

Generalizing Specifications For Uniformly Implemented Loops

variables. We remark that the question of whether a given pro-
gram is "well structured" has been viewed largely as a syntactic
issue (e.g. use of a restricted set of control structures); we
offer the definition of a uniformly implemented loop as an at-

tempt at a characterization of a semantically well structured

program.

R Y L

Generalizing Specifications For Uniformly Implemented Loops

9. References

[Basu 80] ;
Basu, S. A Note on Synthesis of Inductive Assertions, IEEE

Transactions on Software Engineering, SE-6 (January, 19807 .

[Basu & Misra 75]
Basu, S. and Misra, J. Proving Loop Programs, IEEE Transac-
tions on Software Engineering, SE-1 (March, 1973).

{Basu & Misra 76]
Basu, S. K. and Misra, J. Some Classes of Naturally Prov-
able Programs, Proc. 2nd International Conf. on Software
Zngg., San Francisco, Oct. 1976.

[(Gries 79}
Gries, D. 1Is Sometime Ever Better Than Alway?, Transactions
on Programming Languages and Systems, Vol. 1, No. Z, Oct

I379.

[Hoare 59]
Hoare, C. A. R. An Axiomatic Basis for Computer Program-
ming, CACM, 12 (October 1959), pp. 576-583.

(Mills 72]
1'ills, H. D. Mathematical Foundations €for Structured Pro-
gramming, IB'l Federal Systems Division, FSC 72-6012 (1972).

{[ills 75]
*ills, H. D. The Yew Math of Computer Programmning, TAZ!M, 18
(January 1975).

[(1isca 73]
lisra, J. Some Aspects of the Verification of Loop Tomputa-
tions, TIEEZ Transactions on Software Engineering, S53-4 (Mo~
vember 1978), pp. 473-485.

ferd = ‘7()

(stizra 79]
risra, J. Systenatic Verificaticn of Sinmple Loons, Univer-
sity of Texas Technical Report "R-¢7, March 1¢73.

{*iorris & "leghreit 77)
torris, J. 1. and Weghreit, 3. Subgoal Inductiorn, TACYT I0
(April 1277), pp. 209-222,

lYegbreit 77]
Wegbreit, 3. Complexity of Synthesizin Intictive Asser-
tions, JACM, Vol. 24 (July 1977), pp. S504-512,

